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Important Notice

This Report has been prepared for work commissioned by Fire Code Reform Centre Limited and
has been released for information only.

The statements and conclusions of the Report are those of the author(s) and do not necessarily
reflect the views of Fire Code Reform Centre Limited , its Board of Directors or Members.

Neither the authors, Fire Code Reform Centre Limited, nor the organisations and individuals that
have contributed, financially or otherwise, to production of this document warrant or make any
representation whatsoever regarding its use.

Background

The Fire Code Reform Research Program is funded by voluntary contributions from regulatory
authorities, research organisations and industry participants.

Project 4 of the Program involved development of a Fundamental Model, incorporating fire
engineering, risk-assessment methodology and study of human behaviour in order to predict the
performance of building fire safety system designs in terms of Expected Risk to Life (ERL) and Fire
Cost Expectation (FCE). Part 1 of the project relates to Residential Buildings as defined in
Classes 2 to 4 of the Building Code of Australia.

This Report was relevant to the project activities in support of the Model’s development and it is
published in order to disseminate the information it contains more widely to the building fire safety
community.
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1 Introduction

It is by now a well established fact that the overwhelming hazardous toxicant in fires
is carbon monoxide (CO) ([4]). The mechanism by which CO acts on mammals is by
competing with oxygen for the hemoglobin in blood and tying it up as carboxyhemoglobin
(COHD), rather than as the normal oxyhemoglobin. The hemoglobin fraction tied up as
(COHb) is normally expressed as percent COHb (which means the percentage of the
total hemoglobin present as COHb). We shall denote it for short by COHb. Lack of
oxyhemoglobin leads to hypoxia (a reduction of the amount of oxygen supplied to the
tissues of the body) leading to eventual death by asphyxiation.

The hemoglobin fraction is determined by the amount of carbon monoxide inhaled. The
exact relationship will be discussed later in the paper.

Traditional wisdom has set a value of 50% COHb as the threshold level for potential
human lethality.([1,6]), in the sense that a COHb of more than 50% will inevitably lead

to death and that if a fatality is autopsied and its COHb is less than 50%, CO poisoning
cannot be the sole source of death.

However, Debanne et al ([4]), after an exhaustive study of available literature, have come to
the following conclusions:

1. There is generally no need to look for an additional source of lethality in fire
atmo-spheres if the COHb is above 20%.

2. The population of fire fatalities contains more individuals that are at a high risk of
succumbing to carbon monoxide poisoning ( namely the very young and the elderly) than
does the population as a whole.

A typical example of the distribution of the COHDb in fire fatalities with COHb above 20%

is given in Table 1. It is derived from a data base compiled by the University of Southern
Mississippi ([4]). The number of fatalities was 961.

It is clear that there does not exist a unique COHb threshold of lethality. Rather, the
response of the population exposed to CO can be represented by what is known as a



COHb O0-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 |81-90 | 91-100

% population | 0 6.5 6.5 11 17 17 23 16 5

Table 1: COHD Distribution in Fire Fatalities.

Figure 1: Typical bioassay curve.
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bioassay curve, which represents the fraction of the population which dies when COHb
percentage reaches various levels. The bioassay curve can be thought of as the cumulative
proportion of deaths when a very large population is exposed to increasing COHb levels.

A typical shape for a bioassay curve is given by Figure 1.

It is customary to assume for the bioassay curve an equation of the form

€a+bx

A(x) =1 + etbz (1)

It is known as the logistic curve.

An important parameter of the bioassay curve is the value at which 50% of the population is
dead. This is known as the LC50 value and is equal to -a/h for the logistic curve.

The difficulty with the data of Table 1 is that it gives the number of fatalities in various ranges
of COHb percentage, but does not provide the total number of building occupants who ended
up with the various ranges of COHb only the number who did die. The total number is required
in order to estimate the bioassay curve. An extensive search of the literature failed to locate any
such data. In fact, we were unable to find a bioassay curve

for COHD even for experimental animals, let alone humans. And in any case, such a curve
would be quite useless, since what is needed is a bioassay curve which would reflect the



| COHb% 20 | 30 4 [50 [60 [70 [80
‘Cum. Prop. |0 [ 0080 | 0160 | 0.296 | 0506 | 0.716 | 1

Table 2: Cumulative proportion of fatalities versus COHDb.

-composition of a typical population of building occupants, including the very young and
the elderly, as mentioned above. Such a population would probably be very different from
an experimental population.

The best we can do at present is to make an educated guess at the number of occupants
in each range of COHb. In the first place the it seems reasonable to assume that large fires
are likely to lead to inhalation of larger amounts of CO, and therefore to a higher COHb.

It is a well established fact that large fires are less frequent than small fires. On the other
hand, the number of people exposed to CO inhalation in large fires is greater than in small
fires. Since these two factors operate in opposite directions, it may not be far from the
truth to assume that there are approximately equal numbers of occupants in each COHb
range.

A possible way of improving our knowledge in this area would be to carry out computer
simulations of various sizes of fires and to use available statistical knowledge about the
frequency of these fires and about the typical number and location of occupants to evaluate
the number of occupants who would reach the various ranges of COHDb.

One must also take into account known clinical results (discussed later in detail) which
indicate that COHb values above 80% are lethal for all humans. So in attempting to
estimate the bioassay curve, we shall consider only fatalities in the COHb range 20 - SO%,
with a total population of 560. The modified cumulative proportions are given in Table
2.

2. Estimation of the parameters of the logistic curve.

Estimation of the parameters of the logistic curve has been extensively studied and the
recommended procedure (Berkson [2] is as follows:

Let xi be the uppert limits of the COHb ranges and pi be the cumulative proportions

of fatalities. Let n be the population size and let gi = I - pi. Let li = log(pi/qi). li is
known as the "logit" of the proportion and can be thought of as the observed value of a
random variable Li. It is easy to see that, asymptotically, for large ni

E(Li ~a+bx 1)

Var (Li) — 1 (2]
npige j

‘Thus a and b can be consistently estimated by weighted least squares, minimizing

aniqi(li—a—bx)? (4)



Figure 2: Logistic Curve fitted to Fatality Data.
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However, the definition of i has to be modified for pi = 0 or 1.
li = log {1/2(n - 1/2) when pi = 0 is complementary definition for pi = 1.

Applying the methodology just described to the data of Table 2 we find the following
estimates for a and b:
@ =5.070 (5)

b =0.085 (6)

The corresponding logistic curve is plotted in Figure 2 together with the observed cumu-
lative proportions.

3 Clinical presentation

Clinical observations show a fairly consistent relation between the COHDb level and physical
symptoms, as described in Table 3.([Kimmerle [5]]).

Keeping in mind that the clinical observations refer to healthy adults; and that the pop-
ulation of fire fatalities contains, as noted above, a high proportion of the very young
and the elderly, who are far more sensitive to CO poisoning, it appears that the proposed
bioassay curve is consistent with the above table of clinical symptoms.



COHb Symptoms

0-10 None

10-20 Tension in forehead, dilatation of skin vessels

20-30 Headaches, pulsation in sides of head

30-40 Severe headache, ennui, dizziness,

weakening of eyesight; nausea, vomiting, prostration.
40-50 Same as above, increasing in breathing rate

and pulse, asphyxiation, prostration.

50-60 Same as above, convulsions, Cheyne-Stokes respiration.
60-70 Coma, convulsions, weak respiration and pulse, death possible.
70-80 Slowing and stopping of respiration, death within hours.
80-90 Death in less than an hour.

90-100 | Death within a few minutes.

Table 3: COHb and physical symptoms.

4 Calculation of the COHD level from CO inhalation.

As mentioned above, the COHb is determined by the amount of CO inhaled. The

most accurate predictor of the COHD level in humans is the Coburn-Forster-Kane equation
(CEK for short) (Coburn et al [3]. However, the CFK equation requires as inputs a whole
range of parameters, including the volume of air breathed per minute (RMV), body size,
exposure duration and parameters related to lung and blood physiology. The complexity

of the CFK equation makes it unsuitable for use in a fire risk model, and we propose to use
a simpler equation proposed by Stewart et al [7]. This equation has the further advantage
that it lends itself to the determination of the eventual COHD level under exposure to
varying CO concentrations. The equation reads

t
%COHb =L 3.317 x 10™° x CO(u)"% x RMV x du (7)

where CO(u) is the CO concentration in ppm in the inhaled air at time u (RMV) is is the
volume of air breathed per unit time (L/min) and (0, t) is the exposure interval of time.
Compared to the CFK equation, equation (7) gives very good results for high CO concen-
trations and conservative results for low CO concentrations. Since equaation (7) iS much
simpler than the CFK equation, it is recommended for use in the fire risk model.

It must be pointed out, however, that there still remains a great amount of uncertainty
in the derivation of the COHb level, due to the fact that the parameter RMV can vary
within wide limits. Purser [6] reports that for a 70 kg human at rest the RMV is ap-

proximately 8. j L/min, while for slow running, or walking up a 17% gradient the RMV
can reach 50 L/min. The situation is further complicated by the fact that children will

take up CO much more rapidly than adults, and that inhalation of small concentrations
of carbon dioxide will stimulate breathing, so that, for example, at 3% CO2 the RMV is

approximately doubled.



5 Evaluation of expected number of fatalities.

The bioassay curve derived above can be used to evaluate the expected number of fatalities
due to CO poisoning in a particular fire scenario, as follows:

Let there be n occupants in the building and let their COHb levels by the time they

are rescued, or the fire has died down, be x1, - , xn. The probability of death before

the COHb level reaches x is p = A(x), where A(x) is given x to the expected number of
fatalities is 1 x p + 0 x (I - p) = p. The The expected number of fatalities N among the n
occupants in the particular fire scenario will therefore be given by:

N Alr
. (2]
=]

N=

The global expected number of fatalities will be obtained by averaging N over all consid-
ered scenarios.

6 Incapacitation.

Incapacitation is expected to occur at lower levels of COHb than death. There do not
seem to be statistical data for incapacitation in fires, but it appears from perusal of Table
3 that incapacitation occurs roughly at a COHDb level 20% lower than the lethal COHb
level. This suggests that the bioassay curve relating to incapacitation can be taken to be
a logistic curve with parameters a = -3.3 and b = 0.085.

Exact calculation of the mean time to incapacitation is difficult because it depends on the
exact dependence of the COHDb level on time. However: in view of the other uncertainties
of the model, it appears to be sufficient to take it as the time at which the COHb level
reaches the LC50 value; namely 3.3/0.085 = 39%.
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