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Neither the authors, Fire Code Reform Centre Limited, nor the organisations and individuals that
have contributed, financially or otherwise, to production of this document warrant or make any
representation whatsoever regarding its use.

Background

The Fire Code Reform Research Program is funded by voluntary contributions from regulatory
authorities, research organisations and industry participants.

Project 4 of the Program involved development of a Fundamental Model, incorporating fire-
engineering, risk-assessment methodology and study of human behaviour in order to predict the
performance of building fire safety system designs in terms of Expected Risk to Life (ERL) and Fire
Cost Expectation (FCE). Part 1 of the project relates to Residential Buildings as defined in
Classes 2 to 4 of the Building Code of Australia.

This Report was relevant to the project activities in support of the Model's development and it is
published in order to disseminate the information it contains more widely to the building fire safety
community.
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1 The model

Consider a particular occupant of the room. When a fire starts it may take a short or
a long time until it causes a cue to be given to that occupant.This may be an alarm,
smoke, flame, window glass breaking, or the arrival of the fire brigade. To each of those
cues is attached a probability that it will be the first to alert the considered occupant.
For the purposes of the present model, we shall assume that there is only one cue. More
than one cue can be accomodated as follows: the conditional probability of death of the
considered occupant is calculated for the case of each of the considered cues being the
first to alert the occupant. Then the obtained values are combined, using the theorem of
total probability, from the knowledge of the probabilities attached to the various cues.

Starting from the point of time when the alerting cue occurs, we denote by X the random
time until the onset of “untenable conditions” in the room of fire origin. By “untenable
conditions” we mean a room condition which will result in° the death of the considered
occupant if they have not evacuated by then.The distribution of X can be estimated
by running a Monte Carlo simulation, using the appropriate program for compartment
fires and monitoring the cumulative effect of toxic fumes and radiation on the considered
occupant. The stochastic variation is introduced by sampling the parameters of the fire
program from suitable probability distributions. To take into account the fact that X
cannot take negative values, it is convenient to write In X = U, and to work with U rather
than X. In view of the impossibility of having accurate knowledge of the conditions that
will prevail in an actual fire, it is not unreasonable, for engineering design purposes, to
subsume our knowledge of X by just two parameters:

E(U) = pu (1)
Var(U) = o (2)

Also starting from the point of time when the alerting cue occurs, we denote by Y the
time until the considered occupant evacuates the room. This is made up of a number
of components: a waking up time component (mainly at night), a cognitive process time
component, an investigation component and an evacuation preparation component. The



distribution of Y should be derived from statistical surveys.For the purpose of engineer-
ing design, we lump together all these components, write In Y = V and subsume our
knowledge of Y by just two parameters:

E(V) = uv (3)

Var(V) = oi. (4)

The basic assumption of the model is, as already noted above, that the considered oc-
cupant will incur death if and only if their evacuation time Y is longer than the time of
onset of untenable conditions X.

2 Calculation of a safety index

It follows from the basic assumption of the model that the event of the considered occupant
not dying is identical to the event X > Y. But in view of the monotonicity of the
logarithmic transformation this event is identical to the event U > V.

We now need to address the problem of the dependence between X and Y. It seems
reasonable to assume that if the fire is severe untenable conditions will occur early. At
the same time, the fire will supply more compelling cues to the considered occupant, so
that we can assume that evacuation time will tend to be shorter. We conclude that there
will be some positive correlation between X and Y, and therefore also between U and V.
Let the correlation between U and V be denoted by p.

Let now W = V — U, E(W) = uw, Var( W) = ojy. Then
Lw = MLV — Uy (5)
oy = o4 of—2povoy. (6)
The safety index S (see Melchers (1] p.37) is given by £ = pw/ow.

Thus, in order to achieve a safety index of [, it is necessary to choose the parameters of
the onset of untenable conditions in such a way that

pyv > pu + o — 2poyoy. (7)

The appropriate value of the safety index depends on the severity of the risk to life
‘and property. For example, it would be appropriate to take 8 = 2.19 if there are 10
occupants at risk but S = 2.63 if there are 100 occupants at risk. The rationale for these
recommendations will be given in Section 4.

3 Simplifications.

The above result can be greatly simplified if we are prepared to make some conservative
assumptions.

Firstly, it should be noted that there is very scant knowledge of the value of the corre-
lation p in real situations. Fortunately, since, as pointed out above, p is positive, it is a
conservative assumption to assume it to be zero, as can be seen from equation (7).



Secondly, suppose that we define two “design values” for {/ and V as follows:

Udes = HU — ﬂ*UUa (8)
ties = HV +ﬂ*0'v. (9)

We choose * in such a way that when V. is less than U, the safety index is greater
than (. Then it is easy to see that the appropriate value of §* is given by

. Job+ol

i 10
oy +ov (10)

B

From this it follows that 8* will vary from 0.7078 (when-the two standard deviations are
equal) to B (when one of the standard deviations is zero. Thus, it is again a conservative

assumption to take 8* = .

Let us now estimate “characteristic values” for U and V as follows:
Uc = pu—kou, (11)
Ve = pv + kov (12)

where k is an appropriate value which depends on the reliability of our estimation. Rec-
ommended values are given in Section 4.
It then turns out that
Udes = UC - (6* - k)CTU, (13)
Vdes = (ﬁ* - k)UV. (14)

Finally, we can revert to the original values of the variables X and Y as follows: Write

Xe = exp(Uc) (15)
Yo = exp(Ve). (16)
Furthermore, let
SFx = exp{(f* — k)ou] (17)
SFy = exp[(8” — k)ov]. (18)

Note that X and Y¢ are simply the quantiles of X and Y corresponding to Ug and V.
As for SFx and SFy, they are the partial safety factors corresponding to the variables X
and Y respectively.

The design values for X and Y, X,.s and Yy, will then be given by the standard formulae:

Xaes = Xc/SFx (19)
Yies = Yo.SFy. (20)

Thus, in each design class, the partial safety factors can be calculated in terms of the

standard deviations of { and V.



4 Distributional assumptions.

In the previous sections no distributional assumptions have been made and attention has
been focussed on means, standard deviations and correlations.

While this approach provides a convenient way to compare the safety of different designs,
it does not yield actual probabilities of death. To obtain the latter, it is unavoidable to
make distributional assumptions.

A very convenient and robust assumption when dealing with non-negative variables such
as X and Y above is to assume that they have a lognormal distribution. This of course
implies that U and V are normally distributed.

The rationale behind the recommended values of 5 in Section 2 becomes then apparent.

is normally distributed the probability of death for each occupant corresponding.
to § = 219 is 0.001 and the expected number of deaths in one fire among 10 occupants
is 0.01. Similarly the probability of death for each occupant corresponding to 8 = 2.63 is
0.0001 and the expected number of deaths in one fire among 100 occupants is again 0.01.

The rationale behind the choice of & under a distributional assumption is that if the
reliability of the estimation is poor, we cannot expect to estimate accurately the tails of
the distributions. If the reliability is “excellent”, the characteristic values will be taken
as the 5th and 95th percentiles of the distribution. For a “good” reliability they will be
taken as the 10th and 90th percentiles, for a “reasonable” reliability they will be taken as
the 20th and 80th percentiles and for a “poor” reliability they will be taken as the 40th
and 60th percentiles. The corresponding values of k for a lognormal distribution of X
and Y are given in Table 1

[ Percentiles k
5-95 1.64
16-90 1.29
20-80 0.84
40-60 0.25

Table 1: Values of & for a lognormal distribution of X and Y.

In addition, it should be pointed out that under the lognormal assumption the standard
deviations oy and ov can be directly calculated from the mean and standard deviation
of each of X and Y, using the well-known exact relations:

oy = /In(l + CVg) (21)
ov = /ln(1 +C1) (22)

where C'Vy and CVy are the coefficients of variation of X and Y respectively.

These relations are however very robust and insensitive to distributional assumptions,
particularly for small coefficients of variation.



5 Appendix: The lognormal distribution.

We say that X has the lognormal distribution if U = In(X) is normally distributed.
Suppose U has mean py and standard deviation oy. Furthermore, denote the mean of X
by px and its coefficient of variation by C'Vx. We then have the following two pairs of

relations:

pu = In (—ﬂx—=> (23)
J1+CVE
oy = /In(1+4 CV3), (24)

and reciprocally:

1

px = exp(py + 5051) (25)

CVx = +/exp(cf)—1. (26)
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